欢迎来到亿配芯城! | 免费注册
你的位置:JSCJ长晶科技CJ(JCET长电科技)-亿配芯城 > 芯片资讯 > 放大器共模抑制比参数定义及影响电路共模抑制的因素分析
放大器共模抑制比参数定义及影响电路共模抑制的因素分析
发布日期:2024-09-28 08:21     点击次数:137

  许多硬件工程师会将放大器的共模抑制比视为   难掌握的直流参数,首先因为定义所涉及的因子容易产生混淆;其次,掌握了共模抑制比的定义,按其字面理解难以在设计中直接使用;   ,掌握了放大器的共模抑制比参数的评估方法,不代表可以在应用电路对共模信号实现有效抑制。本篇解析放大器共模抑制比参数定义与其影响的评估方法,以及结合一个实际   讨论影响电路共模抑制的因素。

  在讨论共模抑制比之前,先认识两个专有名词,差模增益Ad、共模增益Ac。

3-1.png

3-2.png

  如图2.42(a),差模增益定义为加载于两个输入端之间的信号所获得的增益,如式2-24。

  放大器共模抑制比参数定义及影响电路共模抑制的因素分析

  图2.42差模输入与共模输入信号增益示意图

  放大器的差模增益是电路所需要的增益,而共模增益将放大直流噪声。共模抑制比(CommonModeRejecTIonRaTIo,CMRR),定义为差模增益与共模增益的比值,如式2-26。

  式中,Vcm为输入共模电压,Ver_CMRR为共模电压所引起的输入直流误差。

  老一代精密放大器的共模抑制比通常在70dB至120dB左右,新一代精密放大器的共模抑制比性能大幅提升。如图2.43所示,OP07在25℃环境中,供电电压为±15V,共模电压为±13V时,共模抑制比   值为100dB,典型值为120dB;而ADA4077在同等工作环境和工作电压下,共模电压为-13.8V至13.8V时,共模抑制比   值为132dB,典型值为150dB。

3-3.png

  图2.43ADA4077与OP07共模抑制比性能

  如图2.44,在相同电路中对比OP07、ADA4077共模抑制比的性能,假定电阻完全匹配(R1=R3,R2=R4),共模电压为10V。

3-4.png

  图2.440P07与ADA4077差分放大电路图

  使用OP07共模抑制比的典型值120dB代入式2-28,共模电压在输入端将产生的输入直流误差为10μV。

  而使用ADA4077共模抑制比的典型值150dB代入式2-28,共模电压在输入端将产生的输入值误差为0.316μV。

  由此可见,在该差分电路中,使用ADA4077替换OP07,由放大器共模抑制比限制所产生的直流误差明显改善。

  上述分析通常适合在选型阶段评估放大器共模抑制比是否符合要求,在实际设计中,放大器共模抑制比参数不等于电路共模抑制比,而电路的共模抑制是更为关注的设计要点。

  2017年10月中旬,笔者接到一位异地项目负责人的特急求助电话,其研发的设备在   客户试用中出现异常,将影响   客户产品的生产品质,已经收到限期整改通知。电路如图2.45,工程师使用2片ADA4522-2组建差动电路,   级电路U8A、U8B实现差动电路的输入缓冲器功能,第二级电路U5A实现差动信号放大电路,其中,R6、R7阻值为30KΩ,误差为1%,R5、R74阻值为3KΩ,误差为1%,电路预期的增益设计为10倍。

  图2.45ADA4522-2组建差分电路

     客户在25℃恒温环境下使用设备, 芯片采购平台测试点TP76、TP77对地的共模电压为7V,在TP76、TP77之间输入26.5mV差模信号时,电路输出(U5A1脚)为259mV,接近电路预期设计,但是当TP76、TP77输入差模信号为1mV时,电路输出(U5A1脚)只有5mV,误差过大。

  笔者即时给出电路分级测量定位故障的方法,而项目负责人当时不能完全理解逐级测试原理。坚持认为电路只有放大器和电阻,并且电阻的误差为1%,电路在处理1mV的差分信号误差达到50%,笃定是ADA4522芯片出现问题,没有使用推荐测试方法。所以次日凌晨笔者邮件回复电路分析过程。

  如图2.46,ADA4522-2是零偏型放大器,在25℃环境中,供电电源为30V时,失调电压   值为5μV,相比于1mV的电压影响可以忽略,输入偏置电流   值为150pA,输入失调电流   值为300pA,与输入侧电阻作用所产生的失调电压也可以忽略。

  图2.46ADA4522失调电压与偏置电流规格

  其次,根据图2.45推导电路的传递函数,如图2.47。如步骤三,关于项目负责人认为电路增益为R7与R74比值,建立条件为R5与R74,R6与R7完全一致。

  图2.47第二级差动电路传函推导

  那么这四个匹配电阻使用1%误差的器件,所导致电路的误差还会是1%吗?

     ,通过Excel生成简化之前的电路传递函数,模拟测试点输入TP79输入7V,TP80输入7.001V,R5、R74保持为理想电阻,分组调整R6、R7的误差,计算差分电路标准传递函数的输出值(Vo1),与计算差分电路化简之后传递函数的输出值(Vo2),如图2.48。

  图2.48计算差动电路匹配电阻误差产生的影响

  结论如下:

  (1)R6、R7使用理想电阻,Vo1与Vo2相同。

  (2)R6、R7调整为1%误差电阻时,Vo1为0.136V,Vo2为0.0099V二者差异巨大。

  (3)R6、R7调整为0.1%误差电阻时,Vo1为0.0227V,Vo2为0.00999V二者仍存在明显差异。

  (4)R6、R7调整为0.01%误差电阻时(LT5400A为例),Vo1为0.01127V,Vo2为0.009999V,二者误差为11%。

  (5)R6、R7调整为0.0025%误差的精密电阻时(LT5400B为例),Vo1为0.01031797V,Vo2为0.00999975V,二者误差为3%。

  后续,项目负责人在原机型中,使用LT5400精密电阻替代原误差为1%的电阻R5、R74、R6、R7,整改设备顺利完成   客户的测试验收。

  导致该故障的根本原因是由于差动电路的匹配电阻失配,使得整个电路对共模信号的抑制比远低于预期。电路共模抑制比的影响因素一部分来源于放大器内部(共模抑制比参数),另一部分来源于应用电路,例如差动电路的匹配电阻、信号源内阻。尤其是后者往往不被工程师所重视。